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Abstract

The present work is concerned with modeling the non-linear response of fiber rein-
forced polymer laminates. Recent experimental data suggests that the non-linearity
is not only caused by matrix cracking but also by matrix plasticity due to shear
stresses. To capture the effects of those two mechanisms, a model combining a
plasticity formulation with continuum damage has been developed to simulate the
non-linear response of laminates under plane stress states. The model is used to
compare the predicted behavior of various laminate lay-ups to experimental data
from the literature by looking at the degradation of axial modulus and Poisson’s
ratio of the laminates. The influence of residual curing stresses and in-situ effect on
the predicted response is also investigated.

It is shown that predictions of the combined damage / plasticity model, in gen-
eral, correlate well with the experimental data. The test data shows that there
are two different mechanisms that can have opposite effects on the degradation of
the laminate Poisson’s ratio which is captured correctly by the damage / plasticity
model. Residual curing stresses are found to have a minor influence on the predicted
response for the cases considered here. Some open questions remain regarding the
prediction of damage onset.

Key words: Fiber Reinforced Laminates, Polymer Matrix Composites,
Computational Mechanics, Non-Linear Material Response, Continuum Damage,
Plasticity, Puck Failure Criterion.



Notation

Indices:

1, 2, 3 . . . ply coordinates (1 – fiber, 2 – transverse in-plane, 3 – out-of-plane direction)

l, n, t . . . fracture plane coordinates (l – fiber, n – normal, t – transverse direction)

x, y . . . global coordinates (x – loading direction, y – transverse to load, in plane)

Roman letters:

Cd . . . compliance tensor of damaged ply

C init . . . compliance tensor of initial (undamaged) ply

Ed . . . elasticity tensor of damaged ply

Eincl . . . elasticity tensor of inclusions in Mori-Tanaka formulation

Einit . . . elasticity tensor of initial (undamaged) ply

Ei . . . Young’s modulus in i-direction

en . . . inclusion aspect ratio normal to fracture plane

fE . . . factor of effort

GIc,ply . . . critical energy release rate for intra-ply cracking in mode I

GTh
Ic,ply . . . critical energy release rate for intra-ply cracking in mode I

including residual stresses

GIIc,ply . . . critical energy release rate for intra-ply cracking in mode II

GTh
IIc,ply . . . critical energy release rate for intra-ply cracking in mode II

including residual stresses

Gij . . . shear modulus for ij-shear deformation

Gincl
nl = Gincl

nt . . . inclusion shear modulus in the fracture plane

I . . . fourth order identity matrix

k . . . parameter of shear plasticity law

n . . . exponent of shear plasticity law

pt
12, pc

12 . . . slope parameters for Puck failure criterion

S . . . Eshelby tensor

S . . . nominal shear strength

Sis . . . in-situ shear strength of a ply cluster in a laminate

t . . . thickness of a cluster of equally oriented plies

tply . . . thickness of one single ply

Y . . . nominal transverse tensile strength

Y t
is . . . in-situ transverse tensile strength of a ply cluster in a laminate
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Greek letters:

β . . . lay-up angle of off-axis plies

γij . . . engineering shear strain on plane i in direction j

γult
is . . . shear strain under in-plane simple shear at failure (σ12 = Sis)

γpl
ni . . . plastic shear strain component in the fracture plane in direction i

γpl
nψ . . . magnitude of plastic shear strain in the fracture plane

ε . . . strain tensor

εpl . . . plastic strain tensor

εii . . . normal strain component on plane i in direction i

κ . . . damage evolution parameter

µD . . . damage parameter for shear stiffness recovery under compression

µpl
nψ . . . parameter for influence of normal stress on shear plasticity

µpl
12 . . . influence parameter under in-plane simple shear, σ12

µpl
23 . . . influence parameter under out-of-plane simple shear, σ23

ν21 . . . minor in-plane Poisson’s ratio (ν21 = ν12 E2/E1)

ψ . . . angle between t-coordinate and fracture plane shear stress vector

�σfp . . . traction vector of the fracture plane

σ . . . ply stress tensor

σFPF . . . ply stress tensor at failure (i.e. when ply failure criterion is fulfilled)

σij . . . stress component on plane i in direction j

σni . . . shear stress component on the fracture plane in direction i

σnψ . . . total shear stress on fracture plane (projection of traction vector)

σeq
nψ . . . equivalent fracture plane stress

θfp . . . fracture plane angle predicted by Puck failure criterion

ξ . . . damage state variable

ξsat . . . damage state variable at saturation
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1 INTRODUCTION

The use of fiber reinforced polymer (FRP) composites is increasingly popular
in industries where lightweight design is beneficial. In order to achieve further
weight reductions without compromising the reliability of composite parts, ac-
curate prediction of the material response is essential. Due to their complex,
hierarchical micro-structure, the load response of laminated composites is in-
fluenced by a number of physical mechanisms. Ultimate failure of laminates
is typically caused by fiber failure or delamination. Prior to failure, plastic
deformation and cracking of the weaker matrix constituent may lead to non-
linearity and can influence other failure modes through load redistribution and
by creating local stress concentrations.

Although matrix failure normally does not lead to ultimate laminate failure
directly, the modeling of non-linearities caused by the matrix is important
for two reasons. On the one hand, accurate modeling of load redistribution is
necessary with respect to the influence of the matrix response on other failure
modes such as fiber failure or delamination. On the other hand, the service-
ability of a structure may be determined by criteria other than strength that
depend on the matrix response, for example, if a maximum allowable defor-
mation requirement has to be met or if matrix cracks cannot be tolerated
(e.g. in pressure vessels). Consequently, the mechanisms of matrix-dominated
behavior of laminates need to be understood and their effects captured ap-
propriately by laminate models in order to improve predictions of the load
response and failure of laminates.

The modeling of non-linearities caused by the matrix has been very much
focused on continuum damage mechanics [12, 21] where it is assumed that
an accumulation of brittle matrix cracks is responsible for the observed non-
linearity. Rather than looking at discrete cracks, however, continuum damage
models simulate the response of a cracked ply by modifying the elastic prop-
erties of the homogenized ply depending on some internal state variables. A
number of continuum damage models for stiffness degradation due to ma-
trix cracking under plane stress states have been presented in the literature
[1, 2, 4, 7, 11, 20, 24, 26, 28]. These models have proven to be successful in pre-
dicting the non-linear response when the damaged plies experience primarily
tensile stresses perpendicular to the fiber direction. Under shear-dominated
loading, however, comparisons between model predictions and experimental
data have been less satisfactory. Recent research suggests that the non-linear
response under shear dominated ply loads cannot be attributed to brittle
mechanisms alone [16, 30, 31].

To model the non-linear response of composite plies under shear-dominated
loading, a plasticity model has recently been proposed [25] and combined with
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a damage model developed previously [22, 24, 26]. It is implemented with an
extended version of classical lamination theory (CLT) to provide for analy-
sis of multi-axial laminates under plane stress states including thermal and
moisture effects. The combined damage / plasticity model provides significant
improvements over the original brittle damage model as shown by comparing
predictions of the two models to experimental data [25]. In addition to provid-
ing better correlation with experimental data, the combined model captures
the non-linear response of uni-directional (UD) laminates as well as residual
strains after unloading, and it is able to explain discrepancies between the
shear response that can be observed when using different test methods.

In the present paper, the combined damage / plasticity model is used to inves-
tigate effects of in-situ strength and residual stresses on the non-linear load
response of laminates. First, the formulation of the combined model is briefly
reviewed. Next, the influence of non-linear shear behavior on the predicted
in-situ strength following a method proposed by Camanho et al. [6] is dis-
cussed. Predictions of the combined model are finally compared to two series
of experimental tests by Varna et al. [31, 32].

2 COMBINED DAMAGE/PLASTICITY MODEL

The combined damage / plasticity model assumes that damage occurs in the
form of brittle matrix cracks that span the whole thickness of a ply and lead
to a degradation of the homogenized ply stiffness. Damage can only develop
in plies embedded in a multi-axial laminate because the first matrix crack in a
UD laminate corresponds to ultimate failure. Consequently, any non-linearity
prior to damage onset in embedded plies and all non-linearity in UD laminates
is attributed to plasticity. The constitutive equation of the combined model
that relates the ply stress tensor, σ, to the ply strain tensor, ε, is given by

σ = Ed
(
ε − εpl

)
, (1)

where εpl is the plastic strain tensor defined by the plasticity model and Ed

is the elasticity tensor of a damaged ply given by the damage model. Both of
these tensors can contribute to the non-linear response.

The damage and plasticity formulations used herein are based on the Puck
failure hypothesis for matrix dominated failure in fiber reinforced composites
[17, 20, 23]. According to Puck, fracture occurs in a plane that is parallel to
the fiber orientation and defined by a fracture plane angle, θfp, as depicted in
Fig. 1, left. For plane stress states, the fracture plane is perpendicular to the
laminate plane (θfp = 0) under combinations of transverse tensile stresses and
in-plane shear or moderate transverse compression and in-plane shear. For
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high transverse compression combined with shear, the fracture plane angle is
non-zero and can be computed analytically.

The Puck criterion for plane stress (Puck 2D) [17, 20, 23] is used in the damage
model to predict the onset and evolution of damage under multi-axial stress
states and to compute the fracture plane in which damage accumulates. In
the plasticity model, the accumulation of plastic strain is also assumed to be
associated with the fracture plane predicted by Puck 2D. This assumption is
supported by recent experimental work showing shear bands in UD-laminates
under uniaxial compression [3]. According to this study, the shear bands have
the same orientation as ply cracks that develop when load is increased further,
which suggests that the shear bands are precursors of ply cracks.

The damage/plasticity model is implemented in a stand-alone code combined
with CLT to provide a tool for the non-linear analysis of multi-axial lami-
nates. An extended version of CLT is used to allow for the consideration of
plastic strains as well as the strains caused by moisture and thermal loads
(e.g. [5]). The formulation of the damage and plasticity models is explained
in the following sections.

2.1 Plasticity Formulation

The plasticity law assumes that plastic strains are caused by shear bands
with the same orientation as the fracture plane predicted by Puck 2D. The
plastic shear strain in that plane, γpl

nψ, is related to the shear stress acting on

the fracture plane, σnψ =
√

σ2
nl + σ2

nt, which is the projection of the traction
vector, �σfp, onto the fracture plane (see Fig. 1, right). The plastic shear strain
is assumed to have the form

γpl
nψ =

(
σeq

nψ

k

)n

, (2)

θ fp

1

2

3

n
l

t
σnψ

σnl

σnt

ψ

σnn

l
n

t

fpσ�

Fig. 1. Definition of fracture plane and corresponding coordinate system, l-n-t, with
regard to the ply coordinate system, 1-2-3, by fracture plane angle, θfp (left); trac-
tions on the fracture plane for θfp �= 0 (right).
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with plasticity parameters, k and n, and an equivalent stress, σeq
nψ, defined as

σeq
nψ = |σnψ| + µpl

nψσnn , (3)

to account for the influence of normal stress on the non-linear shear behavior
that is observed in experiments [17, 19]. The factor µpl

nψ is interpolated from

the corresponding parameters for in-plane and out-of-plane shear, µpl
12 and µpl

23,
respectively, as

µpl
nψ = µpl

12sin
2(ψ) + µpl

23cos2(ψ) , (4)

where ψ is the angle between the directions of σnt and σnψ (cf. Fig. 1, right).

The parameters µpl
12 and µpl

23 are considered to be material parameters that need
to be derived from experimental data. In general, the two parameters are not
the same due to the different effect of the ply micro-geometry in longitudinal
and transverse direction resulting in a different influence of normal stresses
on the longitudinal and transverse shear response. The parameter µpl

23 can be
determined from stress–strain data of a uni-axial transverse compression test
on a UD-laminate. The factor µpl

12 should be derived from experimental data
of tests with varying stress ratio σ22/σ12. A detailed discussion of parameter
identification for the plasticity model as well as a method for estimating µpl

12

and µpl
23 when the necessary experimental data is unavailable is given in [25].

Finally, splitting the plastic shear strain γpl
nψ into its two components, γpl

nl and

γpl
nt, and transformation to ply coordinates results in a strain tensor given by

εpl =

⎧⎨
⎩(0, 0, 0, γpl

12, 0, 0)T for θfp = 0

(0, εpl
22, ε

pl
33, γ

pl
12, 0, 0)T for θfp �= 0

. (5)

2.2 Damage Formulation

The elasticity tensor of a damaged ply, Ed, is predicted by a continuum dam-
age model presented in [22, 24, 26]. In that model, a scalar damage state vari-
able, ξ, is introduced as a measure for the amount of damage in a ply. This
damage state variable can increase with load but can never decrease. The load
acting on a ply is quantified by a factor of effort, fE, which is determined from

σFPFfE = σ , (6)

where σ is a given ply stress state and σFPF is the corresponding failure stress
state determined from the Puck 2D failure criterion. The damage state variable
is related to the factor of effort by a damage evolution law of the form

ξ

ξsat
=

⎧⎨
⎩ 0 for fE ≤ 1

1+κ

1 − exp
(
− (fE(1+κ)−1)2

2κ2

)
for fE ≥ 1

1+κ

, (7)
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with one damage evolution parameter κ. The maximum amount of damage
that can be reached in a ply is given by the damage state variable at satu-
ration, ξsat. The general shape of the evolution law function is chosen based
on experimental observations regarding the increasing crack density with load
(e.g. [14, 20]). In terms of continuum damage modeling, the development of
cracks is equivalent to an increase of the damage state variable, ξ. According
to the evolution law in Eq. 7, damage starts to develop when fE = 1

1+κ
is

fulfilled. The evolution parameter κ, therefore, determines the damage onset
load and controls how quickly damage progresses with an increase of load.
For example, the evolution law converges to the step function for κ = 0 such
that damage onset occurs at fE = 1 and the final damage state ξsat is reached
instantly.

The effect of a given damage state on the elastic response of a ply is predicted
by the Mori-Tanaka method [13]. By this approach, the elasticity tensor of
a material containing aligned ellipsoidal inclusions is computed as a function
of the inclusion aspect ratio, en, and the elastic properties of the inclusions
and the surrounding material. In the damage model, the Mori-Tanaka method
is employed using penny-shaped inclusions that are aligned with the fracture
plane predicted by Puck 2D. Note that these inclusions are not intended to
represent actual cracks in the material, rather they are used to derive the
anisotropic elasticity tensor of the damaged material in a thermodynamically
consistent way. Based on the formulation of Tandon and Weng [29], the com-
pliance tensor of the damaged material as a function of ξ is given by

Cd =
(
Ed

)−1
={

I − ξ
[
(Eincl − Einit) : (S − ξ(S − I)) + Einit

]−1
:
[
Eincl − Einit

]}
: C init ,

(8)

where Eincl denotes the elasticity tensor of the fictitious inclusions, Einit and
C init are the elasticity and compliance tensors of the initial (undamaged) ma-
terial, respectively, S is the Eshelby tensor, and I is the 4th order identity
matrix. The elastic properties assigned to the inclusions depend on the stress
state. If the normal stress on the corresponding fracture plane, σnn, is tensile
such that cracks would be open, the inclusions become voids with zero stiffness
(Eincl = 0). For compressive normal stress, the properties of the inclusions are
defined to be the same as those of the initial (undamaged) ply material ex-
cept for reduced shear moduli in the fracture plane, Gincl

nl and Gincl
nt , which are

computed as
Gincl

nl = Gincl
nt = µD|σnn| , (9)

where the factor µD is a material parameter accounting for shear stiffness
recovery due to friction at the crack faces.
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In order to fully define the damage model, the four parameters κ, ξsat, en,
and µD need to be defined. Damage typically progresses very quickly with
increasing load. Reasonable values for the evolution parameter are therefore
in the range of κ = 0.01− 0.05, which means that damage onset in the model
occurs at 99% − 95% of the nominal failure load. The saturation state is
normally set to ξsat = 0.2 for lack of better information and because the Mori-
Tanaka approach becomes increasingly inaccurate for ξ > 0.2. It should be
noted, however, that the choice of ξsat is not particularly relevant because final
failure, e.g. due to fiber failure, is typically reached before crack saturation
occurs. The inclusion aspect ratio normal to the fracture plane, en, which
enters into the computation of the Eshelby tensor, is chosen to be very small
such as to resemble a crack-like geometry. As long as en < 0.01, the exact
choice of en has little effect on the damage model predictions. Little is known
about the correct choice of µD. A value in the range of µD = 10 − 15 has
previously yielded good results, however, a conservative approach would be to
assume no shear stiffness recovery between the crack faces and setting µD = 0.

2.3 In-situ strength with non-linear shear behavior

It has been found in experiments that the transverse tensile and shear strengths
of a ply embedded in a multi-axial laminate are higher than those of a unidi-
rectional (UD) material (e.g. [8, 15]). This effect is commonly termed ’in-situ’
effect. It increases with decreasing thickness of a ply (or the number of equally
oriented plies clustered together) and also depends on the location of a ply in
the laminate (inner or outer ply). In the damage model, the in-situ effect can
be taken into account by employing in-situ strengths, Y t

is and Sis, rather than
UD laminate strengths in the Puck 2D criterion which is used in the model to
determine damage onset under multi-axial stress states.

For the current work, an analytical solution proposed by Camanho et al. [6]
is used to compute in-situ strengths. The in-situ solution for thin embedded
plies assumes an initial flaw in the form of a crack whose size is equal to the
thickness of a ply or cluster of equally oriented plies, t. The in-situ strength
is assumed to correspond to the uni-axial stress at which this initial crack
would start to grow parallel to the fiber direction. The start of crack growth is
determined based on fracture mechanics. For transverse tension, the approach
gives the in-situ strength as

Y t
is =

√
4GIc,ply

πa0Λ0
22

with Λ0
22 = 2

(
1

E2

− ν2
21

E1

)
and a0 =

⎧⎨
⎩t/2 . . . inner ply

t . . . outer ply
,

(10)
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where GIc,ply is the critical energy release rate for mode I intra-laminar crack
propagation in the fiber direction, and E1, E2, and ν21 = ν12E2/E1 are the
ply’s longitudinal and transverse Young’s moduli and minor Poisson’s ratio.

The in-situ shear strength has to take the non-linear shear response into ac-
count and is determined following Ref. [6] from

2
∫ γult

is

0
σ12(γ12) dγ12 =

4GIIc,ply

πa0

with a0 =

⎧⎨
⎩t/2 . . . inner ply

t . . . outer ply
, (11)

where GIIc,ply denotes the mode II critical energy release rate associated with
intra-laminar crack propagation parallel to the fiber direction, and γult

is refers
to the shear strain at the crack propagation load that corresponds to σ12 = Sis.
The non-linear relation for in-plane simple shear given by the plasticity model
(prior to damage onset) is determined from Eq. 2 for σeq

nψ = σ12 as

γ12 = γel
12 + γpl

12 =
σ12

G12

+
(

σ12

k

)n

. (12)

From Eq. 12, it follows that

dγ12 =

(
1

G12

+
n

kn

(
σ12

k

)n−1
)

dσ12 . (13)

Using Eq. 13 in the integral on the left hand side of Eq. 11 leads to

1

2G12

S2
is +

n

(n + 1)kn
Sn+1

is =
2GIIc,ply

πa0

. (14)

The in-situ shear strength, Sis, is given by the real positive root of Eq. 14. If the
exponent n is an odd positive integer, a closed form solution can be obtained
for Eq. 14 which, in that case, has exactly one real positive root. Hahn and Tsai
[9] proposed to use a third order polynomial to approximate the non-linear
shear response. It has been found, however, that a higher exponent typically
yields a better description of the non-linear shear response [25]. It is therefore
suggested here to choose an exponent of n = 5 or n = 7.

3 COMPARISON TO EXPERIMENTAL DATA

The combined damage / plasticity model is used to simulate the load response
of glass fiber / epoxy laminates with varying lay-up under uniaxial tension.
Predictions for the degradation of axial modulus and Poisson’s ratio as func-
tions of axial strain are compared to experimental data by Varna et al. [10,
31, 32].
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Table 1
Material data of the glass fiber / epoxy material [10, 31, 32] and parameters used in
the damage / plasticity model.

Elastic and thermal properties

E1 E2 G12 ν12 ∆T α2 − α1

[GPa] [GPa] [GPa] [K] [1/K]

44.73 12.8 5.8 0.3 -120 1 E-5

Plasticity and damage parameters

n k µpl
12 κ en ξsat

7 147.1 MPa 0 0.05 0.001 0.2

3.1 Model Parameters for the Glass Fiber /Epoxy Material tested

The material used in the experiments is a toughened glass fiber / epoxy system
(material specifications are not given in the references). The determination of
model parameters for the material system is discussed in this section. The
ply properties and model parameters used in the analyses are summarized in
Table 1. Elastic and thermal properties are taken from [31] with ∆T refer-
ring to the assumed temperature change from a stress free state to ambient
temperature and α2 − α1 denoting the difference between the coefficients of
thermal expansion in longitudinal and transverse directions.

Parameters for the plasticity formulation (Sec. 2.1) are determined from the
non-linear shear response derived from tensile tests on angle ply laminates,
(±β4)s, with two different lay-up angles β = 27◦ and β = 40◦ [31]. The
experimental data is shown in Fig. 2, left, including the analytical curve fit for
n = 7 and k = 147.1MPa. The two lay-up angles lead to different stress ratios
of σ22/σ12 = −0.06 for β = 27◦ and σ22/σ12 = 0.3 for β = 40◦. Since there
is little difference between the data from these two laminates, it is assumed
that the shear response is independent of transverse normal stresses, and the
influence parameter for in-plane shear, µpl

12, is set to zero. The parameter µpl
23

is not relevant for the test cases shown here since the predicted fracture plane
angle is always zero, resulting in ψ = 90◦ for plane stress states (see Eq. 4 and
Fig. 1).

For the damage model (Sec. 2.2), the damage evolution parameter is chosen as
κ = 0.05, which leads to a quick progression of damage as is typically observed
in experiments, and the inclusion aspect ratio is selected to be very small,
en = 0.001, to resemble crack like voids. The damage variable at saturation
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is set to ξsat = 0.2, however, this parameter is found to have no influence on
the results presented since saturation is not reached within the strain range
considered.

The degradation of elastic ply properties resulting from the chosen set of dam-
age parameters is shown in Fig. 2, right, for the 90◦ ply of a (02/904)s laminate
under uniaxial tension. Damage onset occurs at 95% of the predicted ply fail-
ure load as a result of κ = 0.05. For a smaller value of κ, damage onset in
Fig. 2, right, would shift to slightly higher strains (at most, to ε22 = 0.6%
for κ = 0). The different degradation of elastic properties in the model is
controlled by the inclusion aspect ratio en. For a spherical inclusion (en = 1),
all four degradation curves would coincide. For the thin, crack-like voids used
in the damage model, there is almost no change of E1 and ν12, a pronounced
reduction of E2, and less severe degradation of G12 (Fig. 2, right). This char-
acteristic is consistent with analytical solutions for the stiffness degradation
of a cracked ply (e.g. [7]).

Ply strength values and critical energy release rates for the glass fiber com-
posite are not given in [10, 31, 32]. The mode I critical energy release rate
can be back-computed from data of the (02/904)s laminate test. According to
[10], cracking of the 90◦ layers for the (02/904)s layup starts at approximately
εxx = 0.6% (where x denotes the loading direction and y is the in-plane trans-
verse direction). If curing stresses are disregarded, this strain state corresponds
to a transverse stress in the 90◦ plies computed via CLT of σ22 = 76 MPa. As-
suming that this value represents the in-situ transverse tensile strength, Y t

is,
of an 8-ply cluster with tply = 0.144mm, the mode I critical energy release
rate can be computed by inverting Eq. 10 with a0 = 8 tply/2 = 0.576 mm as
GIc,ply = 0.4 kJ/m2. This value lies on the upper end of the typical range of
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Table 2
Critical energy release rates and Puck 2D slope parameters used in the analyses.

GIc,ply GIIc,ply GTh
Ic,ply GTh

IIc,ply pt
12 pc

12

[kJ/m2] [kJ/m2] [kJ/m2] [kJ/m2]

0.4 0.8 0.51 1.02 0.3 0.25

energy release rates determined by standard tests for mode I fracture. If the
same procedure is followed including curing stresses in the CLT equation by
assuming a thermal load ∆T = −120 K, a failure strain of εxx = 0.6% corre-
sponds to transverse stresses σ22 = 85 MPa which leads to GTh

Ic,ply = 0.51 kJ/m2

following Eq. 10.

Since there is no experimental data available regarding shear failure, the mode
II critical energy release rate is estimated as GIIc,ply = 2 GIc,ply which corre-
sponds to the typical GIIc,ply/GIc,ply ratio for ply fracture for several carbon
fiber / epoxy composites given in [27]. The values of GIIc,ply and GTh

IIc,ply lead
to 8-ply in-situ shear strengths of Sis = 72.2 MPa and STh

is = 73.5 MPa, re-
spectively, which are consistent with typical values for glass fiber / epoxy. It is
clear that these values are only a rough estimate and a variation of GIIc,ply will
influence the predicted damage onset in plies that are loaded mainly by shear
stresses. For the examples shown here, a higher value of GIIc,ply would shift
damage onset in off-axis plies to higher strains. However, the non-linearity
under shear loading is dominated by plasticity rather than damage and the
effect is therefore not very significant.

Finally, the slope parameters for the Puck 2D criterion, pt
12 and pc

12, are chosen
as pt

12 = 0.3 and pc
12 = 0.25 which correspond to the values suggested by

Puck for glass fiber / epoxy materials [18]. Strength data for fiber failure and
compressive failure is not relevant for the test cases considered here. The
parameters related to ply strength predictions are summarized in Table 2.

3.2 Laminate tests (±β/904)s

The first series of tested laminates has a lay-up of (±β/904)s with four dif-
ferent angles β = 0◦, 15◦, 30◦, 40◦. Three analyses are performed for each of
the laminates and compared to experimental data [32] as shown in Figs. 3–
6. In a first analysis, the in-situ effect is not taken into account and 8-ply
strengths without residual stresses are used for all layers (i.e. Y t = 76 MPa and
S = 72.2 MPa). The corresponding curves in Figs. 3–6 are labeled as ’nom-
inal’. The other two analyses use in-situ strengths computed from Eqs. 10
and 11 based on the thickness of each ply cluster and its location (inner
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or outer). The curves denoted by ‘in-situ’ are computed without residual
stresses (GIc,ply = 0.4 kJ/m2, GIIc,ply = 0.8 kJ/m2), while the analyses for
curves ‘∆T = −120 K’ include the effect of residual stresses by a superim-
posed thermal load and using GTh

Ic,ply = 0.51 kJ/m2 and GTh
IIc,ply = 1.02 kJ/m2.

The strength values used in the three analyses are summarized in Table 3.

The degradation in Figs. 3–6 is caused primarily by transverse cracking in the
90◦ plies. In fact, Varna et al. [32] assumed that cracking occurs only in those
layers. For the (02/904)s laminate (Fig. 3), all three analyses yield exactly
the same result since below 2% axial strain the 0◦ plies do not develop any
matrix cracking and the predicted response of 90◦ plies is the same for all
three analyses.
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For the (±15/904)s laminate (Fig. 4), the ‘nominal’ analysis predicts damage
onset in the angle plies at approximately εxx = 1.5% in addition to damage of
the 90◦ plies. This leads to a kink in the degradation curve of Poisson’s ratio
while the effect on Young’s modulus degradation is only minimal. Similar
observations can be made for the ‘nominal’ predictions of the (±30/904)s and
(±40/904)s laminates (Figs. 5 and 6, resp.). For these two laminates, however,
the onset of damage in the angle plies already occurs at lower strains and with
slightly more effect on the predicted modulus degradation.

The analyses using in-situ strengths do not predict any cracking of the outer
layers for the first two laminates within the strain interval considered. For
laminates (±30/904)s and (±40/904)s, the Poisson’s ratio curves show two
kinks which correspond to damage onset in the +β and the −β plies, respec-
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Table 3
Nominal and in-situ strength values used in the analyses.

in-situ nominal

ply thickness t = tply t = 2 tply t = 4 tply t = 8 tply all

ply location inner outer outer inner inner —

Y t [MPa] 213 151 107 107 76 76

S [MPa] 101 91 82 82 73 73

in-situ, ∆T = −120K

Y t [MPa] 241 170 120 120 85

S [MPa] 104 95 85 85 76

tively. The fact that +β and −β plies do not start to crack at the same time
is a result of the different in-situ strengths of outer and inner plies according
to Eqs. 10 and 11. For all four lay-ups, there is little difference between the
predictions with and without residual stresses.

It is interesting to note that the ‘nominal’ predictions, in general, show bet-
ter correlation to experiments than the ones that include the in-situ effect.
It should be kept in mind, however, that damage onset in the angle plies de-
pends very much on shear strength, especially for high values of lay-up angle
β, and that the shear strength is an estimated value. Regarding the in-situ
predictions, there are two additional aspects that lead to further uncertainty.
First, there may be some interaction between damage evolution in neighboring
layers due to local stress concentrations near cracks in adjacent plies that can-
not be accounted for in a continuum damage approach. Second, the laminate
becomes unsymmetrical when damage evolves differently in +β and −β plies.
In that case, the loading of a test specimen is different from the assumed uni-
axial loading. Taking all these aspects into consideration, it is difficult to draw
any firm conclusions on the applicability of the in-situ strength predictions.
However, judging from the model predictions, it is likely that cracking of the
angle plies contributes to the measured degradation in Figs. 5 and 6.

3.3 Laminate tests (0/ ± β4/01/2)s

The second series of tests reported in [31] was performed on laminates with
a stacking sequence (0/ ± β4/01/2)s and five angles β = 90◦, 70◦, 55◦, 40◦, 25◦.
Non-linearity in these laminates originates only from the β-plies, which experi-
ence varying stress ratios, σ22/σ12, depending on the angle β. Since the experi-
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mental data only provides laminate stresses and strains, ply stress states have
to be computed via CLT and depend on the assumed constitutive response.
The ply loading paths in σ12 – σ22 stress space computed from the laminate
strains are shown in Fig. 7. Loading paths assuming linear elastic plies are
depicted as thick solid arrows. For lay-up angles β = 90◦, 70◦ and 55◦, the
arrowheads indicate the stress states corresponding to the laminate strain at
which cracking initiated in the experiments [31]. For β = 40◦ and β = 25◦, no
cracking was observed during the tests, and the arrowheads indicate the start
of non-linearity in the experiments.

According to the combined model, stress states with a small ratio of σ22/σ12,
i.e. here for laminates with angles β = 55◦, 40◦ and 25◦, lead to significant
plastic strain prior to damage onset. The ply stress states during loading
predicted by the plasticity part of the model (i.e. suppressing the onset of
damage) are shown by dashed lines in Fig. 7 and deviate significantly from
the stress ratios computed for linear elastic plies as the amount of plasticity
increases. The curve for β = 55◦ is plotted up to εxx = 1.134% which represents
the average damage onset strain in tests of that lay-up. For β = 40◦ and
β = 25◦, the dashed curves terminate at εxx = 2% which constitutes the
strain range tested without onset of cracking. In other words, the ply stress
states given by the three dashed lines represent strain states that did not
cause any cracking in the three corresponding experiments. For β = 90◦ and
β = 70◦, the plasticity model does not predict any non-linearity and would
therefore result in the same loading path as given by the black arrows.
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Also shown in Fig. 7 is the Puck failure envelope (using 4-ply in-situ strengths)
which determines damage onset in the damage / plasticity model. For the spe-
cial case of β = 90, the 8-ply in-situ strength, Y t

is = 76 MPa, has to be applied.
Comparing the stress states computed from the laminate strains at the on-
set of cracking to the Puck failure envelope reveals some discrepancies. In the
β = 90◦ and β = 70◦ laminates, damage seems to develop prematurely, i.e. the
arrows in Fig. 7 do not reach the theoretical failure stress. On the other hand,
the predictions of the plasticity model for β = 55◦ and β = 40◦ suggest that,
in these tests, the stress states at failure (ends of dashed lines) exceed the fail-
ure envelope. Since the value of GIIc,ply (and therefore Sis) is only an estimate
due to the lack of experimental data, the underprediction of damage onset
for β = 40◦ merely indicates that the actual shear strength is higher than
the estimated one. For β = 90◦, the deviation may be acceptable considering
the typical scatter of experimental data. The discrepancy for β = 70◦ and
β = 55◦, however, seems too high to be explained by scatter. Especially the
fact that damage onset is overpredicted for β = 70◦ but severely underpre-
dicted for β = 55◦ is surprising. Therefore, it has to be concluded that damage
onset under multiaxial stress states is not yet completely understood and will
require further investigation.

In Figs. 8–12, the degradation of axial modulus and laminate Poisson’s ratio
normalized by their respective initial values are shown for all five laminates.
The experimental data points are taken from [31]. Note that the degradation
curves for β = 90◦, 70◦, and 55◦ in [31] are given as a function of crack density,
which can be converted to axial strain by the corresponding analytical ex-
pressions also provided in [31]. Model predictions are performed using in-situ
strengths with and without residual stresses. For each of the cases β = 70◦, 55◦,
and 40◦, a third analysis labeled ‘best fit’ is performed in which the strengths
Y t

is and Sis are adjusted such that damage onset matches the experimental
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data for each test case. This means that for those ’best fit’ analyses, the fail-
ure envelope depicted in Fig. 7 is modified by changing Y t

is and Sis such that
the envelope passes through the end point of the respective loading curve in
Fig. 7 (i.e. the arrowhead for β = 70◦ and the end points of the dashed lines
for β = 55◦, and β = 40◦). The purpose of these adjustments is to see whether
the degradation behavior is captured correctly when the uncertainty of ply
strengths is factored out.

As can be seen in Figs. 8–12, the correlation between test results and model
predictions is very good except for the discrepancy in damage onset discussed
above. Similarly to the first series of tests in Section 3.2, there is only small
difference between predictions with and without residual stresses. Also in anal-
ogy to observations in the previous section, it is found that the different ef-
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fects contributing to non-linearity are much more apparent in the degradation
curves of Poisson’s ratio than those of axial modulus. The non-linearity for
β = 90◦ and β = 70◦ is caused by damage only and leads to a decrease in
axial modulus as well as in Poisson’s ratio (Figs. 8 and 9). For β = 40◦ and
β = 25◦, on the other hand, non-linearity is primarily due to plasticity which
reduces the axial modulus but increases the laminate Poisson’s ratio (Figs. 11
and 12). In the β = 55◦ laminate, damage and plasticity both contribute to
the non-linear response (Fig. 10). Consequently, the Poisson’s ratio increases
at first as a result of plasticity, but when damage and plastic strains accumu-
late simultaneously, the Poisson’s ratio stays approximately constant, i.e. the
opposing effects of damage and plasticity on Poisson’s ratio cancel each other
out.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2

E x
/E

x0

εxx [%]

(0/pm404/01/2)s, Varna99

exp. Varna99
model: in-situ

∆T = -120K
best fit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2

ν x
y/

ν x
y0

εxx [%]

(0/pm404/01/2)s, Varna99

exp. Varna99
model: in-situ

∆T = -120K
best fit

Fig. 11. Results for lay-up (0/± 404/01/2)s; axial modulus (left) and laminate Pois-
son’s ratio (right) normalized by their initial value; experimental data from [31].

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2

E x
/E

x0

εxx [%]

(0/pm254/01/2)s, Varna99

exp. Varna99
model: in-situ

∆T = -120K
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2

ν x
y/

ν x
y0

εxx [%]

(0/pm254/01/2)s, Varna99

exp. Varna99
model: in-situ

∆T = -120K

Fig. 12. Results for lay-up (0/± 254/01/2)s; axial modulus (left) and laminate Pois-
son’s ratio (right) normalized by their initial value; experimental data from [31].

20



In general, stiffness degradation related to damage seems to be slightly under-
estimated by the model (see Figs. 8 and 9 as well as Section 3.2) while plastic
strains tend to be slightly overpredicted. However, the overall correlation with
experimental data regarding non-linearity is satisfactory and the different ef-
fects of damage and plasticity on the non-linear response are captured very
well by the combined damage / plasticity model. The main issue that requires
further investigation is the discrepancy between model and experiments re-
garding damage onset under multi-axial stress states.

4 CONCLUSIONS

A ply-level model for fiber reinforced composites is proposed that combines
plasticity and continuum damage mechanics to predict the non-linear response
of polymer composite laminates. The Puck criterion for plane stress states is
used for predicting damage onset in the model. To account for the in-situ
effect in thin embedded plies, an analytical fracture mechanics based solution
is adopted to compute in-situ strengths as a function of ply thickness.

The proposed model is used to predict the load response of various laminates
under uniaxial tension, and results are compared to experimental data from
two series of tests from the literature. Parameters for the plasticity formulation
of the model are identified from test data independent from the test data used
in the comparisons. The damage parameters that control stiffness degradation
due to damage are chosen as typical values for glass fiber materials.

The first series of tests consists of a thick 90◦ layer embedded in various angle-
ply sublaminates. While most of the non-linearity in these laminates is due to
damage in the 90◦ plies, it is demonstrated by the analyses that in some cases
damage in the sublaminates is likely to contribute to the non-linearity. The
second test series investigates non-linearity due to multi-axial ply stress states
by using laminates consisting of angle-ply sublaminates embedded between
0◦ layers. The main challenge in these tests is found to be the prediction
of damage onset for various stress ratios σ22/σ12. Apart from the unresolved
problem of damage onset, the different effects of plasticity and damage on the
non-linear response are captured very well by the proposed model.

The influence of residual stresses on predictions for both test series is investi-
gated. It is found that residual stresses have little effect on the results, which
is partly due to the fact that ply strengths are determined from the onset
of cracking in an embedded layer. Therefore, residual stresses are implicitly
taken into account to a certain extent even when they are not modeled di-
rectly. When ply strengths are determined from UD laminate tests, it is to be
expected that residual stresses have a significant influence on damage onset.
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An interesting observation made from the comparison to experiments is that
the degradation of Poisson’s ratio can give valuable additional information. For
example, the additional degradation due to successive damage onset in several
layers predicted for test cases of the first test series, is much more apparent in
the degradation of Poisson’s ratio than in that of axial modulus. Furthermore,
in the second series of tests, the Poisson’s ratio degradation clearly shows that
there are two different mechanisms responsible for the non-linear response. One
mechanism leads to an increase of Poisson’s ratio while the other mechanism
causes a decrease. In the present model the two mechanisms are interpreted
as matrix plasticity and matrix cracking. Since both mechanisms result in a
reduction of the axial modulus, the two mechanisms cannot be distinguished
by looking at the degradation of axial modulus only.
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Madrid, 2007.

[4] E. J. Barbero and P. Lonetti. An inelastic damage model for fiber rein-
forced laminates. J. Comp. Mat., 36(8):941–962, 2002.

[5] B. A. Bednarcyk. A fully coupled micro/macro theory for thermo-electro-
magneto-elasto-plastic composite laminates. Technical Report CR—2002-
211468, NASA, 2002.

22



[6] P. P. Camanho, C. G. Dávila, S. T. Pinho, L. Iannucci, and P. Robinson.
Prediction of in situ strengths and matrix cracking in composites under
transverse tension and in-plane shear. Composites Part A, 37(2):165–176,
2006.

[7] P. P. Camanho, J. A. Mayugo, P. Maimı́, and C. G. Dávila. A
micromechanics-based damage model for the strength prediction of com-
posite laminates. In Proc. of European Conference on Computational
Mechanics (ECCM 2006), June 5–9, 2006, Lisbon, Portugal. Paper 1661,
2006.

[8] F. W. Crossman, W. J. Warren, A. S. D. Wang, and G. E. Law Jr. Initia-
tion and growth of transverse cracks and edge delamination in composite
laminates, part 2: Experimental results. J. Comp. Mat., 14:88–108, 1980.

[9] H. T. Hahn and S. W. Tsai. Nonlinear elastic behaviour of unidirectional
composite laminates. J. Comp. Mat., 7:102–110, 1973.

[10] R. Joffe and J. Varna. Analytical modeling of stiffness reduction in sym-
metric and balanced laminates due to cracks in 90◦ layers. Comp. Sci.
and Tech., 59:1641–1652, 1999.
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